以斯帖之友    儲值會員專區    聯絡我們    臉書粉絲頁    部落格
關鍵字搜尋
新增網頁1
 
 
 
【以斯帖每日實戰教學】 2013年8月28日,竸爭風險存活資料(Competing risks data)分析 [推到 Facebook]
 

存活資料中最常見的分析方法爲Kaplan-Meier, 或是Cox regression,然而上述方法僅適用於單一事件(event)發生率的評估,例如常見的死亡爲感興趣的事件。但在醫學研究中實務上應用時,可能存在有二種以上不同的事件,而感興趣的事件爲其中一種。在這種情形下,出現某種事件可能會掩蓋了其它事件發生的可能性,此即爲竸爭風險。例如,針對白血病病患的研究,進行骨髓移植後,可能發生的事件(event)有二種:白血病復發(relapse)以及移植失敗造成的死亡(death)在這個例子中,如果我們要探討的是骨髓移植後的復發率,那麼移植失敗造成的死亡(death)即爲復發(relapse)的竸爭風險事件(competing risk event)

 

在進行統計分析時,最大的問題在於當我們將復發定爲感興趣事件時,移植失敗的死亡情形該如何處理?此種狀況下,不再使用傳統的存活函數(survival function)來呈現不同時間點所對應的存活率;而是以累積發生函數(cumulative incidence function),來呈現特定事件在不同時間點發生的可能性。目前較常見用來分析竸爭風險資料的統計軟體爲SAS, R

 

Reference:

Pintilie M. Competing Risks: A Practical Perspective. John Wiley & Sons: New York, 2006, 240pp.

 
 
新增網頁1
Copyright © 2017 以斯帖統計顧問股份有限公司 All Rights Reserved.
116-94 台北市文山區辛亥路四段130巷11號1樓(捷運辛亥站旁,點擊連結地圖)
電話:(02)2935-3311 傳真:(02)2935-3379  E-mail:service@estat.com.tw
.會員服務條款
.隱私權保護說明
.人才招募
.聯絡我們
.Facebook